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The space of internal coordinates of a molecular system is partitioned into 
catchment regions of various critical points of the energy hypersufface. The 
partitioning is based on an ordering of steepest descent paths into equivalence 
classes. The properties of these catchment regions and their boundaries are 
analyzed and the concepts of chemical structure, reaction path and reaction 
mechanism are discussed within the framework of the Born-Oppenheimer  
and energy hypersurface approximations. Relations between catchment 
regions and the chemically important reactive domains of energy hypersur- 
faces, as well as models for "branching" of reaction mechanisms, caused by 
instability domains D~,, ~ -> 1, are investigated. 
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1. Introduction 

Quantum chemical calculations of conformational changes and chemical reac- 
tions of polyatomic molecules are of considerable importance, since such cal- 
culations may provide information that is unavailable at present by experimental 
means. The detailed calculation of even small portions of potential energy 
hypersurfaces of many dimensions, however, is a very complicated, if not formid- 
able task, and it is important to explore the possibilities of simplifying the 
associated mathematical and computational problems. If one is able to locate the 
chemically important regions of a multidimensional energy hypersurface, then the 
analysis may be restricted to these regions and the computational effort may be 
reduced considerably. Alternatively, if it is possible to identify those regions of the 
hypersufface from which conversion into a given product is likely, the details of 
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the interior of such regions, far away from the energy minimum, become of 
secondary importance. 

In an earlier study a scheme has been proposed for the identification and 
classification of the chemically most important "reactive domains" of potential 
energy hypersurfaces [1]. The proposed scheme is based on the partitioning of the 
space of the internal coordinates of the molecule into various domains that are 
distinguished according to the curvature properties of the hypersurface. These 
curvature properties are well defined in regions of the hypersurface where no 
surface crossing occurs and neighbourhoods of singularities or chemically unreal- 
istic points are explicitly excluded. The energy hypersurface is assumed to be twice 
continuously differentiable at every "chemically realistic" point and the parti- 
tioning scheme is directly applicable only to single-surface chemical processes. 
Since the analysis is applicable only to the energy hypersurface model, relations 
between properties of the model are investigated, and terms like "equilibrium 
geometry"  or "transition state geometry" are interpreted as points of the model, 
rather than real chemical structures. The partitioning leads to a hierarchy of 
domains ~i~ {D,  }, ~ = 0, 1 . . . . .  3N - 7, with Do domains being the chemically most 
important, since all energy minima and transition states fall into such Do domains. 
In spite of the fact that the classification of these domains utilizes only the local 
curvature properties of energy hypersurfaces, some general characteristics of 
reaction paths, i.e. intrinsically non-local features on the hypersurface, may be 
related to the index/x of domain D , ,  if the path or a part of it lies within D, .  

The local properties of energy hypersurfaces and reaction paths at a point may 
characterize a given nuclear configuration in the absolute sense. The gradient and 
curvature properties of the hypersurface at the given point may be used to 
describe the direction of the most likely change of this configuration. For infinitely 
slow nuclear motion, this direction is that of the ideal "vibrationless" steepest 
descent path. In order to characterize a nuclear configuration in a relative sense, 
with respect to an equilibrium geometrical arrangement of the nuclei, some 
non-local features of the energy hypersurface must also be considered. One may 
ask the question, how similar is the actual configuration to an equilibrium 
arrangement,  or, more importantly, how likely is the eventual conversion of the 
actual configuration into a given equilibrium one? To answer this question 
generally one needs some information on the global features of the energy 
hypersurface. Qualitatively speaking, all those nuclear configurations which are 
most likely to become converted into a given equilibrium configuration are 
expected to show some similarities. The points on the energy hypersurface 
corresponding to these configurations are likely to fall into a neighbourhood of the 
local minimum point m describing the equilibrium configuration. The collection 
of all these points may be visualized as a "catchment region" for the given 
minimum point m. Most experimental information on the stereochemistry of 
molecules and reacting systems refer to equilibrium or near-equilibrium nuclear 
arrangements, and it is of some interest to study, what are these catchment regions 
of energy hypersurfaces, surrounding various local minima. D ,  domains of small 
/z index contain the most likely reaction paths describing chemical processes 
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confined to a single energy hypersurface of a given electronic state. By contrast, 
chemical processes involving transitions between various hypersurfaces, such as 
photochemical reactions, are more likely to pass through points in D r  domains 
with large index ~, even if the process eventually leads to a minimum in a Do 
domain. For the prediction of the ultimate outcome of such processes it appears 
essential to determine the location and boundaries of catchment regions belong- 
ing to various minima. 

The concept of catchment regions about points of minimum energy nuclear 
configurations is related to the internal motions of the molecular system, and it is 
convenient to describe these regions in a 3 N - 6  dimensional frame of internal 
coordinates. Whereas most of our examples will be given in an orthogonal 
coordinate system, specified below, for the derivation of general relations a 
Riemannian tensor formalism will be used; thus the results will not be affected by 
the choice of the internal coordinates. 

The most commonly used model for the analysis of conformational changes and 
chemical reactions of polyatomic molecules (N>>2) is based on the Born-  
Oppenheimer approximation [2]. In this approximation the total energy of the 
molecular system of a given electronic state may be written as a function of the 
nuclear positions. By excluding translational motion of the molecule as a whole a 
cartesian coordinate system may be defined with origin fixed to the molecule; for 
vibrational analysis the origin is usually defined at the centre of mass. Further-  
more, if only internal motions and no rotations of the molecule as a whole are 
considered, then it is always possible to attach the cartesian axes to the molecule. 
This leads to the reduction of 3N cartesian coordinates to n = 3N - 6 coordinates. 
For the analysis of large amplitude vibrational motions with respect to a given 
nuclear configuration the mass-weighted cartesian displacement coordinates are 
transformed to normal coordinates with the Eckart  conditions [3] being used to 
specify the molecular axis system. Although extensive domains of potential 
energy surfaces, including all essential features of a complete reaction path 
(reactant and product minima and transition state) may be treated by using the 
large amplitude formalism [4], this technique is not ideally suited for studying 
more general nuclear rearrangements. In routine MO calculations the con- 
formational motion or reaction is usually approximated by assigning essentially 
rigid molecular models to each point of the reaction path. In computational 
practice the transformations between internal and cartesian coordinates are 
usually defined with respect to such rigid models, e.g. by using the Z matrix 
technique [5]. Although for some choices of internal coordinates the kinetic 
energy expressions become much too complicated to be of practical use in 
dynamical studies, it is possible to define a metric for a non-redundant  set of 
bond-length, bond angle internal coordinates 1. It is often convenient to describe 
the energy hypersurface as a Riemannian relief map E(r) over the n-dimensional 

1 We exclude here the possibility of identical positions for two nuclei that would correspond to a 
nuclear reaction. We shall not consider points that belong to the closure/~r of a set Dexd, containing 
neighbourhoods of such "chemically unrealistic" nuclear configurations [1]. 
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Riemannian space R of a set of generalized internal coordinates 2. Contravariant 
components r g of position vector r ~ R may be augmented by component-r n§ = 
E( r ) ;  the resulting n + 1 dimensional vector "+lr is an element of a space ~+IR, 
embedding the energy hypersurface. At each chemically realistic point r e  
R, rEDexd an n - 1  dimensional subspace, n-~R (r) may be defined, over which 
the relief map E(r) is locally horizontal [1]. The curvature properties of E(r) over 
this " - IR  (r) subspace characterize a hierarchy of reactive domains {D,} of the 
hypersurface, where index/z  is related to the Hessian matrix "-lH(r), defined 
over "-~R(r). For critical points rc and n- l r  of R and ~-lR(r), respectively, 
indices A.(rc) and/z (~- l r ) ,  are the number of negative eigenvalues of Hessian 
matrices H(rc) and ~-lH(n-lr), respectively. Since to each ordinary point r ~ R a 
unique n- lR (r) space may be assigned, at each such point r the r-~ ~-~r assign- 
ment is also unique. Consequently, " - I H  and/z may be referred to as "-lH(r) and 
/z (r), respectively [1, 6]. Index/x is zero at all minima and first order saddle points 
of E(r), consequently Do domains are particularly important, since they contain 
all points r that correspond to equilibrium nuclear configurations and to transition 
states [1]. Furthermore,  minimum energy reaction paths are stable only within 
such Do domains. 

2. Local and Global Properties 

In the present study we shall consider a straightforward generalization of the 
conventional geographical concept of catchment regions of three dimensional 
relief maps to higher dimensional energy hypersurfaces 3. These regions may be 
associated with basins of attractors of a vector field, using the terminology of 
Thorn's catastrophe theory [7]. Minima of the hypersurface take the role of the 
attractors. A rigorous definition of catchment regions, based on the properties of 
steepest descent relief paths ,+ lp  in ~+IR [1] and their projections ~P into "R 
(orthogonal trajectories [8-10]), will be given in terms of equivalence classes, 
defined for the "P paths. Since these regions are related to the global features of 
the hypersurfaces, it is important to determine, how the more readily calculable 
local properties may be utilized in their analysis. Relations between D r domains 
and various catchment regions are expected to simplify the analysis of multi- 
dimensional reaction paths of polyatomic molecules. 

Points where the E( r )  function is non-differentiable (such points may occur at 
intersections of energy hypersurfaces [ 11]) require special treatment. In the strict 
sense, for ideal single-surface chemical processes the problem of surface inter- 
sections is irrelevant [1]. However,  when considering multiple-surface problems 
of polyatomic molecules with intersecting surfaces the definition of domain Dexcl 

2 We shall use the same notations as in Ref. [1]. Left superscript specifies the dimension of the space 
and it is omitted if the dimension is n. Distances and angles are defined in terms of the Riemannian 
metric mg 0 of the actual space mR. 
3 One may note the formal analogy between watersheds around lake basins and the proposed 
concept of catchment regions of potential energy hypersurfaces. 
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[1] must include neighbourhoods of such intersection points: 

D ~ x c , = U O ( r v ,  p). (1) 
,y 

Here  r v is either a point where the coordinates of two or more of the nuclei 
become identical or any point where E ( r )  is not twice continuously differentiable. 
The p radius of the G(rv, p) open balls is a suitably chosen small positive value. 

We shall assume that the collection of all non-degenerate m~)d/Sexd minimum 
points of the energy hypersurface form a countable set, M '  = {m ~)} and that this 
set is ordered, by the relation 

E ( m  ~i)) <_ E ( m  (i+ 1~). (2) 

An ordering is possible even for such periodic hypersurfaces, where a finite set of 
symmetrically non-equivalent minima is repeated infinitely, since for such 
periodic surfaces one may always choose, without loss of chemical information, a 
representative subdomain within which no periodicity occurs. 

To any non-critical point r ~ R, (rg/Sexcl) i.e. where the gradient g(r)  is non-zero, 
g(r)  r O, one may assign a steepest descent path P~. This path P~ starts at point 
r, r ~ Pr and it follows the direction of the negative gradient, - g ( r ) .  That is, at any 
non-critical point of the path, rA ~ P~ 

g(rA) 
- - a ( r A ) -  Ig(ra)l (3) 

lira rB - rA 
r  rAIrB--rAI 

where 

rB~P~ 

and 

E ( r B ) < E ( r A ) .  

(3a) 

(3b) 

Here  vector a, i.e. the normalized gradient vector is also referred to as the path 
vector [1]. Since for any finite molecular system the energy hypersurface is 
bounded from below, every steepest descent path P, must terminate at a point rE. 
Points r and rz  are called the origin and extremity, respectively, of path Pr. If Pr 
does not enter the closure/gexcl of excluded domain Dexc~ 

P, c~/5~xcl = O (4a) 

then the extremity must be a critical point, rc, 

rE = rc (4b) 

e.g. a minimum, rc  = m or a saddle point rc  = s of some index A, A -> 1 [1]. We 
shall always assume that this rc  critical point also belongs to P~ 

rc ~ Pr. (4c) 

The concept of path vector a may be extended to critical points by assuming 
continuous dependence of a(r ' )  on r '~  Pr along the path P~ [1]. 
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Steepest descent paths P',,P'~ ~/~excl • ~, with their extremities in /Se~c~, rE 
/5~xcZ, will deserve special attention. Also, if a steepest descent path Pr enters Dexcl 
but after entering also leaves/5,~d, i.e. it does not reach its extremity rE in/5~x~l, 
we still shall regard it terminated at the boundary point o f / ) ~ d .  That portion of 
the original P', that remains after leaving Oexcl will be regarded a different path 
with its extremity in the complementer of/5~x~l. 

Several steepest descent paths may have the same extremity ro  A trivial example 
is the case where r ' e  P~, clearly then P~, c P~ i.e, the two paths are identical 
between r' and the extremity. More important are those cases where P,, f) P~ = rc 
i.e. only the extremity is common. In general, if A ( r c ) < - n - 2 ,  e.g. if rc is a 
minimum along at least two coordinates, then there are infinitely many different 
paths with rc as their only common point. An example for such a critical point is 
the optimum planar structure of NH3, here A(rc)= 1 and n = 6. There are 
infinitely many steepest descent paths with the common extremity rc, all of these 
paths representing in-plane rearrangements of the NH3 molecule. If for two such 
paths, P, and P~,, the path vectors at the common extremity rc are the negatives of 
each other, a ( r c ) = - a ' ( r c ) ,  then P,, is called the continuation of P,. Such 
continuations of steepest descent paths beyond their extremities are necessary for 
the description of vibrational problems, and P~ U Pr, may be regarded a single 
path, passing through ro If A (rc) -< n - 2, then infinitely many such paths may pass 
through ro 

Whereas a steepest descent path P~, P~ f-)/Sexd = Q,  contains exactly one critical 
point, by contrast, a minimum energy path P always contains a saddle point s of 
index A (s) = 1, and from s, P follows the steepest descent directions on both sides 
of s toward two minima. That is, a minimum energy path P contains exactly three 
critical points, two of which are minima and one is a saddle point: 

m(1)~p, h(ma))=O,  ~(m(~)) = 0 

s e P ,  A(s)= 1, /z(s) = 0  

m(2)~p, A(m(2)) = O, /z(m(2)) = O. 

(5a) 

(5b) 

(5c) 

3. Catchment Regions 

The set of all steepest descent paths {Pr}, r~'/~excl, g(r) # O, may be ordered into 
equivalence classes according to their extremities, {rE}: 

p(rc) ={/or: rc eP,}  (6) 

or, if P~ enters/Sexcl, P, ~/Sexcl # 0 ,  then all these paths are regarded as belonging 
to a single class: 

p(Oo=.) = {/or: p, (~/Sexcl r ~}. (6a) 

If the rc critical point is a minimum, then equivalence class p(~c) reflects the 
chemical property that all steepest descent paths P~ ~ p(rc) are equivalent in the 
sense that they all lead to the same product, represented by point rc, A (rc) = O. 
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Steepest descent paths may, however,  lead to a saddle point, A (rc) > 0, that may 
be a transition state if A (rc) = 1. It is clear f rom the definition of steepest descent 
paths that equivalence classes for critical points rc with index A ( r c ) =  n are 
empty;  however,  equivalence classes P (re), A (rc) < n, are in general non-empty.  
That  is, if rc is a non-degenerate  critical point, and rcsgDexc~, then 

P (re) = iZI if[ A (rc) = n. (6b) 

Particulerly important  are those equivalence classes p(,c) for which h(rc)= 
O, rc = m, a minimum, since they lead to a convenient definition of catchment 
regions. A definition 4 of catchment region C (i) for minimum point m(i )~M ' of 
the energy hypersurface E(r) may be given as the set of origin points {r} of all 
paths Pr ~ p(m,~), i.e. the collection of all those points r(rgE3excl) f rom which the 

(i). steepest descent path P~ terminates at minimum m 

C (') = {m ('), r: m(i)~ Pr}. (7) 

Minimum m (1) is assumed to belong to its own catchment region. 

Since all steepest descent paths are ordered into equivalence classes, and all m (~) 
minima are different, these catchment regions are disjoint, 

C (i) A C (i') = ~ ,  if i r i'. (8) 

The definition of C (i) is consistent with the geographical concept of catchment 
regions, since one can assign a steepest descent path P~ to each non-critical point 
r ( r g  E3~xc~). On the other hand, if no steepest descent path passes through point !", 
then the gradient must vanish there, g(r) = 0, i.e. r is a critical point of the energy 
hypersurface. It is clear then, that critical points other than non-degenerate  
minima, m ~ M ' ,  do not belong to any of these catchment regions C (g). 

Definition (7), however,  may be extended to degenerate  minima as well. In this 
context, we shall distinguish between two types of degenerate  critical points of 
index A = 0. A critical point rc with a positive semidefinite Hessian [1] 

A (rc) = 0, (9) 

det lU(rc)l = 0 (10) 

will be referred to as a degenerate minimum, if there exists an open ball G(rc, p), 
such that 

E(rc)<-E(r)  (11a) 

if 
r ~ G(rc, p) ( l l b )  

for a small enough O, P > 0. 

If no such open ball G(rc, p) can be found for any p, p > 0, then degenerate  critical 
point rc will be referred to as a shoulder. If degenerate  minimum rc is separated 

4 For catchment region of m (0 the C (~) notation will be used, unless we wish to emphasize that this is a 
catchment region of a minimum, when C ('~"~) will be written instead. 
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f rom other such minima, then condition (1 la) may be replaced by the stronger 
condition: 

E(rc )<E(r ) ,  r# rc .  (12) 

In this case the order of the first non-vanishing derivative along each coordinate 
must be an even number  and all of these derivatives must be positive. Relation 
(12) is also valid for non-degenerate  minima. Furthermore,  separated degenerate  
minima and non-degenerate  minima have the common proper ty  that there exists 
p ' ,  p '  > 0 such, that the condition 

if 

P,  e P('~) (13a) 

r e G(rc, P') (13b) 

holds for steepest descent paths 5. Truly degenerate  minima, and in general, 
critical points with a positive semi-definite Hessian matrix H(rc)  rarely occur on 
chemical energy hypersurfaces although ab initio calculations for molecules, 
containing second row elements frequently indicate extremely flat and possibly 
degenerate  potential  minima [12]. As long as these degenerate  minimum points 
are separated,  each may be added to set M ' ,  with a distinct index i, and definition 
(7) may then be applied for the C u> catchment region of degenerate  minimum m u) 
as well. However ,  if degenerate  minima form a connected point set, such as a 
horizontal line segment or a horizontal domain at the bot tom of a valley, no index i 
may be assigned to the individual minimum points. Nevertheless,  to the entire 
connected point set a common index i may be assigned and one may define a 
catchment  region C (;) by allowing any one of these degenerate  minima to take the 
role of m (~) in definition (7). Taking this generalized interpretation of index i, set M 
of all minimum points may be partially ordered, using relation (2). In the following 
a similar ordering will be assumed for all critical points of each index )t. The fact 
that the ordering is partial, i.e. it does not distinguish between elements of a set of 
connected degenerate  minima, will not affect our analysis. 

For a general polyatomic molecule (N >> 2), with the exception of highly sym- 
metric species, the energy cannot be constant along the entire domain of an 
internal coordinate, E(r (~ + aa) # const. (for every a, -oo  < a -< 00) 6. Conse- 
quently, if the actual energy hypersurface E(r) is an analytic function of r then all 
minima must be isolated and the above problem does not arise. However ,  both 

5 In general, only those Q connected sets of critical points are problematic, for which E(r) is not 
twice continuously differentiable at the boundary points of Q, since then the boundary of/9~xcz may 
contain critical points from set Q. 
6 In principle, if a group of atoms in a molecule have a local Co~ symmetry element, e.g. the 
--C~_C--H group in methylacetylene, then at least one of the n = 3 N -  6 coordinates may be chosen 
as a rotational angle along which the energy is constant. In this case a connected set of degenerate 
minima exists along the entire range of this coordinate. However, in such cases this coordinate may be 
omitted and the dimension of R reduced, n < 3N-  6. 
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restricted and unrestricted Har t ree-Fock  (RHF and UHF,  resp.) potential energy 
surfaces may show non-analyticities [13] or erratic behaviour [14], furthermore,  if 
the E(r)  functional is generated by spline fitting, the result is often non-analytic. 
Consequently, the occurrence of non-isolated critical points cannot be excluded. 
Similar problems may arise at intersections of potential energy hypersurfaces [11 ] 
where the energy functional E(r)  is not ditterentiable along some of the nuclear 
coordinates. 

4. Boundaries of Catchment Regions 

The maximum points z of E(r)  form a set denoted by Z :  

Z ={z: g(z) = 0, ~(z) = n, zg/5oxcl}. (14) 

The collection of all saddle points s, i.e. all critical points with index 1 -< A (s) < n 
will be denoted by S: 

S ={s: g(s) =0,  1 -< ;~(s)< n, sg/Sexcl}. (15) 

Set S' is defined as 

S '=  S u{rc :  g ( r c ) =  O, ; t (rc)= O, rcy~ M, rc~/9r (16) 

i.e. S' contains all shoulder points in addition to all saddle points, that are not in 
Dexcl" 

Points z e Z and s e S' do not belong to any of the above catchment regions, 

z, scZC u), for any i, (17) 

since no steepest descent path P~ or P. is defined. Furthermore,  if for an ordinary 
point r the P. path terminates at a point s, s e S', or at point r', r' e/}.xcl, then r 
does not belong to any of the C u) catchment regions either: 

rL~ C (1) for any i if re{r :  P, r~S' # Q } =  C (s') (18a) 

or, if re{r :  P. nLS~x~l # ~ } =  C (rLxc'). (18b) 

The set of all points not covered by catchment regions C u) will be denoted by W: 

W : R - U C(i )  : z g s '  u c (S') u c (/~exd) u Dexcl (19) 
i 

where sets C (s') and C (D~176 are defined by (18a) and (18b), respectively. Set W 
contains all boundary points of all catchment regions C u). 

The definition of the C u~ catchment regions implies that a typical C ( '  is an open 
set. The W ~) boundary of catchment region C u) is an n - 1 dimensional hyper- 
surface that separates minimum m (n from every minimum m u') of index i' # i. (A 
connected point set of degenerate minima share the same serial index i, and these 
minima are not separated by boundaries). If ~(i) is the closure of catchment region 
C (i~, then W u) may be defined as 

w ( i )  : ~ ( i )  ~ W .  (20) 
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Fig. I. Model surface with catchment regions C (i) and C (r) of minima m (~ and m (r), respectively. 
Boundaries of catchment regions (shown by heavy lines) pass through various saddle points s and 
maxima M 

In Fig. 1, ca tchment  regions C (~) and C (~') of a model  surface are shown. Path Pr 
with origin at point  r terminates  at min imum m (;), whereas  path  Pr '  with origin at 
point  r '  te rminates  at extremity m (~'). The  W (~ and W (r) boundar ies  of ca tchment  
regions C (~) and C (~'), respectively, have a c o m m o n  segment  containing saddle 
points  s (k) and separat ing the two ca tchment  regions. Points r and r '  fall on  
opposi te  sides of this c o m m o n  segment.  Path P,, ,  with origin at point  r" ~ C (i') has 
the same extremity (m(~')) as path  Pr'  and both  belong to the same equivalence 
class, 

P~,, P~,, ~ p("(")). 

None  of the above steepest  descent  paths is a par t  of a min imum energy path,  since 
such a path  must  enter  a C (1) ca tchment  region at one  of the saddle points  s, 
A ( s )  = 1.  

In order  to show that definitions (19) and (20) are chemically meaningful ,  we 
prove  that  no  min imum point  m (i') may  fall on  the boundary  of ca tchment  region 
C ") of a non-degene ra t e  min imum or an isolated degenera te  min imum m (i) 

Whereas  for the simplest case of isolated minima this follows directly f rom 
C (~) c~ C (i') = Q ,  we present  here a proof  that is easier to generalize for pathologi-  
cal cases. 

Let  us consider a critical point  r c  in the point  set 

W '(i) = C ( ~ ) -  C (1) (21) 

on the bounda ry  of C <~), that  is, 

r c  ~ ~( t )  (21a) 
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and 

rc ,g  C (i). (21b) 

As  a consequence  of re la t ion (12), rc  cannot  be long  to a set of connec ted  
degene ra t e  m in ima  with serial  index i, and no m '(i) exists for which 

m '(~ = r c  (22) 

since m (~ is an isolated min imum.  Con t r a ry  to the propos i t ion ,  let us assume that  
rc  is a m in imum,  rc  = m (t'~. Since m (e'~ ~ C(i), it is possible  to find a poin t  series 
{r (j~} in C (~ that  converges  to b o u n d a r y  point  m (~') = rc  ~ W'(i): 

lim r (j~ = rc  = m ( r )  (23) 
i 

where  

{r (i)} c C (il (24) 

and 

r ~j) # m (/~ (24a) 

P rope r ty  (24) implies that  

Pr(,, ~ P("")) (25) 

for  any index ]. On the o ther  hand,  by applying rela t ions (1 la ,  b) we m a y  write for  
any point  r in an open  ball G ( m  (i'), p)  of a small  enough  radius p, p > 0 ,  that  

E ( r )  >- E ( m  (i')). (26) 

The re  must  exist index/"  such, that  

r (r) ~ G ( m  (e), p) .  (27) 

Since r (j') ~ C (i) and r (r) # m (~), r (j') itself cannot  be  a critical point .  Consequent ly ,  
even if m (g') be longs  to a set of connec ted  degene ra t e  minima,  r (;) cannot  be long  
to the s ame  set. Consequent ly ,  if O is small  enough,  then for  the r (r), m (e) point  
pai r  inequal i ty  (12) applies,  i.e. 

E ( r  (i')) > E ( m  (r)) (28) 

and 

Pr(i') ~ P("('"). (29) 

H o w e v e r ,  re la t ion (25) implies that  

Per )  e P("(')), (30) 

a contradic t ion,  since m(~)r m (i'). Tha t  is, r c e  W m) cannot  be  a min imum.  

Essent ia l ly  the same  proof  applies  to the ca tchment  region of a connec ted  set of 
degene ra t e  m in ima  if this set  has no points  in /Sexcl. H o w e v e r ,  if the second 
der iva t ive  is d iscont inuous  at any of these  m i n i m u m  points,  then  W (i) may  also 
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, , , l i ' )  s (k " )  

s(k,,,, ) 

Fig. 2. Model surface showing various segments of the W (i) boundary of C (1). The (M (t''~, M (t')] 
segment of W (~) falls into the interior of C(~) 

contain points from this degenerate set. Such degenerate cases, however, are not 
likely to occur in the chemically important regions of energy hypersurfaces. 

Boundary W (i) may include points r that are not boundary points of any other 
catchment region C (i'), rsg W (~') for any i' ~ i. Such an example is shown on Fig. 2, 
where a ridge stretching from M (~'') to M (~') through s (k'), ~4 (~) and s (k) falls into the 
interior of C(~). 

Formally, points on this ridge do not belong to C (g~, since a Pr path from any point 
r of the ridge terminates at one of the saddle points s (k) and s (k'), rather than at 
minimum m(~). In the geographical sense, however, only the boundary points of 
the closure C(~) may be regarded as true boundary points of catchment region C (1). 

The entire space R may be partitioned into a set of mutually exclusive domains 
C (1), C (2) . . . . .  C (i) . . . . .  W. Catchment regions C (~) and C w) are called neigh- 
bours if W (~) n W (~'~ ~ ~ .  The catchment regions are ordered by relation (2) and 
for any pair C (~), C (i'~, (i < i') of catchment regions for which the inequality holds 
in (2), a product-reactant assignment can be made by labelling C (t) as product 
region and C (;') as reactant region. It is clear that this labelling reflects the relative 
stabilities of the corresponding equilibrium geometries m (1) and m (~'~ in terms of 
total energies. 

A similar relation does not necessarily hold for arbitrary point pairs from C (~) and 
C w), and it may be possible to find points r E C (~), r '~  C w) far enough from the 
minima such that E(r )  > E(r ' ) .  

A given catchment region C (~) may contain points that correspond to highly 
unlikely nuclear configurations, even if index i is small, i.e. m (~ is one of the lowest 
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few minima. Such points usually belong to D~. domains of large index/x. On the 
other hand, points r along minimum energy paths are likely to have smaller/z (r) 
indices than points representing chemically unlikely nuclear arrangements [1]. 
The relations between catchment regions {C (i~} and domains {D.} reflect the 
relative importance of various subdomains of the C (~ regions. 

For m (e~ ~ C (i~ the critical point indices h (m"~) =/x (m"~) = 0, and there must exist a 
domain D~o ~ such that m ( ~ D ~  ~. If there is any other minimum m (i'~ on the 
hypersurface, and m (~ and m "'~ are not elements of a connected set of degenerate 
minima, that is i # i', then m (~'~ belongs to a different catchment region m (i'~ ~ C,'~. 
There must exist a domain D~0 ~'~ such that m "'~ ~ D~0 r~. Usually, these two minima 
may be interconnected by a minimum energy path P, if there is a saddle point s 
such, that h (s) = 1 and s ~ W (~ c~ W (~'~, or, by a series of minimum energy paths, 
joined at their extremities at one or more intermediate minima {m (i~}, i, i' # ]. In 
all cases, D~ ~ must contain at least one saddle point s, h (s) = 1, s ~ D~ ~ such that 
s ~ W (~. Consequently, D~ ~ and W (i~ must have at least one common point, 

s ~ W (i~ c~D~ ~. (31) 

Similarly, there must exist a saddle point s', h (s') = 1, such that 

$' E W (r) ~D(o r). (31a) 

If the minimum energy path (or a series of such paths) does not pass through an 
instability domain D~,,/z -> 1, then the connectedness property of Do domains [1] 
implies that D(o ''~ = D~o ~. - (~ Domains/-)o and D(o ~'~ may be different only if there are 
points r, tz(r)-> 1 along the minimum energy path(s) interconnecting m "~ and 
m(~'~. On the model surface shown in Fig. 3 the boundaries of D,, domains are 

......................... ...... D o .:."" D{ 

�9 . . . . .  

i o o  

D ~" ...: Do- \ 
:.  

Fig. 3. Typical model surface showing the interrelations between C (1) and various D,~ domains. 
Boundaries of the latter are shown by dotted line 
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indicated by dotted lines, whereas the W (i~ boundary of catchment region C (i~ is 
shown as solid line. Since all four saddle points have indices/z(s)  = 0, they all 
belong to the Do domain containing minimum point m (~. Consequently, all points 
with index/z (r) = 0, shown on the figure, belong to the same Do domain. Portions 
of four different D1 domains are also shown in the figure. Catchment  region C (~ 
contains subdomains of all five domains Do, D1, D~, D~ and D~". With the 
exception of the four saddle points, all points of the W (i~ boundary fall into the D~ 
domains, 

(r) = 1 if r ~ W (i), r r s. (32) 

Whereas this example might suggest the contrary, it is not  true that 

/ z ( r ) > 0  i f g ( r ) ~ 0 ,  r ~  W u) 

for boundary points of all catchment regions. As the example in Fig. 4 shows, 
non-critical points with index g ( r ) =  0 may also belong to the boundary. Any 
point r within the closed segment [a, b] on the W (~'~ boundary belongs to Do, that 
is,/x (r) = 0. This example shows two more  unusual features: domain D1 contains 
no critical point at all, and the two minima, m (~) and m (i') may be interconnected 
by a (non-steepest-descent) path that lies in the interior of Do and does not  pass 
through a saddle point (s(k)). In fact, an entire Do domain may be contained in W, 
as in the model surface shown in Fig. 5, where D ;  c W. 

Whereas not every point r ~ W (~ of ~ (r) = 0 must be a saddle point s, it is true that 
every saddle point s, tz (s) = 0 must belong to W, s e W, by virtue of definition (19). 

.... . . . .  ..... CIiI~ ..... 

Fig. 4. Atypical model surface with ordinary r c Do points on the [a, b] segment of the W (i') boundary. 
D1 does not contain critical point and minima m (1) and m w) may be interconnected within Do without 
passing through a saddle point 
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Fig. 5. Atypical model surface with an entire Do domain (D~)) contained in IV. Domain D~ does not 
have a minimum 

Let us consider all minimum energy paths with the common extremity m (i). These 
are the only minimum energy paths entering catchment region C (n. Since each 
minimum energy path contains exactly one saddle point s, A (s) = 1, these saddle 
points must also belong to the boundary W (~ of C (n. Also, to each isolated saddle 
point s c W (i), A(s)= 1, one may assign a minimum energy path; consequently 
there is a one to one correspondence between these saddle points and minimum 
energy paths, 

P(k) *-'~S(k) (33) 

where 

p(k) : re(i) c p(k) (34a) 

and 

S(k):S(k)~ W (n and A(s (k))= 1. (34b) 

For any such s <k) the equivalence class of steepest descent paths, 

p(s(k)) ={p,:  s(k)~ p,} (35) 

is composed of paths Pr with their origins in W: 

r ~ W if Pr eP(S(k)). (36) 

Since all such Pr paths terminate at saddle point s (k), the set of all their origin 
points ~" may be regarded a "catchment region" for saddle point s(k): 

C (s(~)) = {s (k), r: S(k)e P,}. (37) 
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Relation (36) may be re-stated as 

C (s~) c W. (38) 

Since a steepest descent path Pr contains only one critical point, that is the 
extremity, the entire set C (s~k~) contains only one critical point, s (k). The closure 
t~ (~) ,  however, may contain additional critical points that must be elements of 
the ( ~ )  - C ~k~) boundary. It is always possible to find a point series {r (j)} within 
C ~ )  that converges to a given point r on the boundary, 

lim r u ) =  r (39) 
i 

r (j) ~ C (~k)~ (39a) 

r s C(S~>~ - C (~k)). (39b) 

Since these r u) points are origins of steepest descent paths P r ( j )  from the 
equivalence class p(s(k~), it can be shown, similarly to the case of the W (i~ boundary, 
that boundary point r cannot be a minimum. Point !", however, may be a saddle 
point or maximum, 1 -< A (r) -< n. 

Definition (37) is applicable for any element of set S', i.e. for saddle points of any 
index, 1 -< A (s) < n, or to shoulders, and relation (38) is also valid for any element 
s e S', as a direct consequence of definition (19). Consequently, set W itself may 
be partit ioned into catchment regions of all elements of set S', set Z of all maxima, 
and L3~x~l: 

W :  U C($(k)) ~-J /  ~') C(/~exc]) k"J/~excl (40) 
k 

S(k)ES ' 

where C <~ may be regarded the catchment region for /5~x~. Similarly to 
property (8) of C u) catchment regions, the C <*<k)) regions are disjoint: 

C (*~) c~ C (~'~ # O,  if k # k' (41) 

and also 

C ('~'~ n C (G~~ = Q.  (41a) 

A complete catchment region partitioning of space R may be given as 

R = [,3 C (i) U C (~'~) [,..J Z U C(/~exel) U /~excl (42) 
i k 

or more concisely 

R = U c(r(t)) U c(E3excl) U/~excl (43) 

where index I runs over all non-degenerate and isolated degenerate critical points 
as well as over all sets of connected degenerate critical points, that are not 
contained in the closure of the excluded domain D~xo~ 

r~) ~ / 9 ~ .  (44) 
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Here the "catchment regions" for maxima are defined as one-point sets: 

C (z(')) = {z(/)}, X (•(/)) =/-/ (45) 

and are used purely for the sake of a uniform treatment of all critical points. 

5. The Concept of Molecular Structure and Catchment Regions of Critical 
Points 

The concept of chemical structure has undergone a considerable development 
since the early models of "atoms interconnected by chemical bonds". The 
classical concept of structure is often associated with a rigid nuclear arrangement, 
corresponding to an equilibrium geometry. This structural model is clearly an 
oversimplification, since even within the Born-Oppenheimer approximation a 
vibrating molecule spends no time at the equilibrium configuration. Furthermore, 
by treating electrons and nuclei on equal footing, it appears more appropriate to 
refer to nuclear distributions rather than to nuclear positions, just as one refers to 
electron distributions, rather than to electronic positions in a given molecule. 
Nevertheless, the classical structural concept of molecules is very successful in 
correlating geometrical features of "equilibrium configurations" with macros- 
copic chemical properties, and stereochemistry, symmetry properties and the very 
identity of molecules are usually discussed in terms of such "equilibrium 
configurations". A great variety of spectroscopic phenomena may be described 
with satisfactory accuracy by quantum mechanical treatments involving approx- 
imate potentials in the neighbourhoods of such "equilibrium points". 

It has been argued that even extensions of the classical concept of "structure" are 
incompatible with rigorous quantum mechanics, and recently several authors 
have given theoretical discussions of the underlying quantum mechanical 
concepts and of the interpretation of "structure" in chemistry [15-21]. 

In any practical sense, molecules do have some identity and different molecules, 
even if composed of the same set of atoms, do exhibit different "structural" 
features. Apparently, the problem of the quantum chemical structure concept is a 
matter of definition. Whereas a structure concept defined only for discrete points, 
e.g. for minima m ~ of R is clearly unsatisfactory, on intuitive basis one may 
expect that a quantum mechanical definition retains some reference to such 
points, or it is even based on them. Alternatively as Bader and co-workers have 
demonstrated [20-21], chemical structure may be defined in terms of molecular 
graphs, determined by the topological properties of molecular charge density, a 
quantum mechanical observable. It is conjectured, that a homeomorphism exists 
between the structure diagram of the charge density and the nuclear potential 
[213. 

The definition of catchment regions offers an intuitively straightforward definition 
for chemical structures, that assigns an open set of points to a given structural 
label. Within the framework of the Born-Oppenheimer energy hypersurface 
model the surface points have a simple geometric interpretation and each point is 
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associated with a rigid nuclear arrangement. Considering two different points i n 
the immediate vicinity of a stationary point, the associated geometrical structures 
may be derived by small distortions of the "equilibrium structure", that is 
associated with the stationary point (critical point). Since the structural charac- 
terization of the "equilibrium structure" itself is only an approximation, there is 
little justification for considering these three geometries fundamentally 
different, and one may regard an entire neighbourhood of a critical point as one 
that describes essentially the same, if somewhat distorted, "molecular structure". 
Such an "approximate classification" of molecular structure is indeed well 
established in chemical practice. E.g. various vibrational states of c i s - l , 2 -  
difluoroethene are all considered c i s - l ,2 -d i f luoroe thene ,  in spite of differences 
even between classical "t ime averaged" geometries that are due to anhar- 
monicity. On the other hand, all these geometries are well distinguished from 
various states of the trans compound. 

In the energy hypersurface model it is convenient to regard the nuclear geometries 
associated with various critical points as "reference structures" ("equilibrium 
structures") and consider any geometry in the close neighbourhood of these points 
as a distorted nuclea r arrangement, i.e. essentially the same compound ("chemical 
structure") as that at the critical point. It is natural then to classify these distorted 
nuclear arrangements according to catchment regions of various critical points. In 
this classification the nuclear arrangement of point r, r s C <i), is regarded a 
distorted form of reference structure represented by the equilibrium nuclear 
arrangement of minimum point m ~i~. Similarly, point r e  C ~s<k~) is regarded a 
distorted form of the chemical structure at the "transition state", described by 
saddle point s <k~. As long as at point r there is a steepest descent path Pr leading to 
critical point rc, the actual difference between geometric arrangements at points r 
and rc  may be considered a "distortion", and precisely the same condition has 
been used in the definition of catchment region C <rc). However,  if a steepest 
descent path Pr leads to a different critical point, r~, then the structural differences 
between points r and rc  are certainly sufficient to regard an rc--> r distortion 
"large" in a chemical sense. Such a distortion may be classified as a chemical 
(conformational or reaction) process, since the geometry at point r is likely to get 
converted into one at point r~, rather than into one at point rc. 

The classification of chemical structures may then follow the ordering of steepest 
descent paths into equivalence classes {P~c)}, and the identity of a given structure 
(with limited distortions allowed) is decided on the basis of catchment regions 
C (r~>. The limitations on distortions that are considered small enough to preserve 
the fundamental features (chemical identity) of a structure are precisely defined in 
terms of the W ~ boundaries of C (r~) catchment regions about critical points rc. 

6. Reaction Mechanisms and Catchment Regions 

The classical concept of chemical structure is only an approximation in the 
rigorous quantum mechanical sense, and the qualitative description of the inter- 
conversion processes between such structures involves similar approximations. 
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Although in chemical practice it is usually possible to identify some distinguishing 
features of the structural changes during a reaction, usually referred to as the 
reaction mechanism, nevertheless, in the rigorous quantum mechanical sense, no 
reaction follows a unique course of geometry changes. The concept of minimum 
energy reaction path is an approximation to the steric course of a chemical 
process, just as a critical point (e.g. "equilibrium configuration") is an approxi- 
mation to a chemical structure, and the two concepts represent a consistent set of 
approximations. Within the framework of the Born-Oppenheimer  energy surface 
model it is convenient to distinguish between reaction mechanisms according to 
minimum energy paths, i.e. two mechanisms are considered different if they may 
be associated with two different minimum energy paths. There is a one- to-one 
correspondence between minimum energy paths and saddle points s (k~, A (s ~k)) = 
1 ; consequently, the ideal reaction mechanisms (i.e. those hypothetical processes 
following minimum energy paths) may be identified by the corresponding saddle 
points. However,  even within the Born-Oppenheimer  model, infinitely many 
different trajectories may pass through a neighbourhood of saddle point, s (k~, 
associated with the given "ideal" reaction mechanism, and all these trajectories 
may be regarded as "distorted" versions of the ideal minimum energy path p(k~. 
Considering a given pair of minirna and a set of interconnecting trajectories, {P}, it 
is natural to regard the subset {Pt c {p} of all those paths that pass through 
the catchment region C (*~k~ of saddle point s (k~, as representing essentially the 
same, if somewhat distorted, reaction mechanism. On the other hand, if a path P'  
is distorted beyond the W ~*~k~ boundary of catchment region C ('~k'~, then a 
"relaxation" of this path would lead to a different minimum energy path p(k,~, that 
passes through a saddle point s (k') c W, different from s (k). That is, path P'  has 
more common "chemical features" with minimum energy path p(k'~ at s (k') than 
with the original minimum energy path, p(k~ at s (k~ and it shows more similarities 
with the ideal reaction mechanism corresponding to saddle point s(k') than with 
the one corresponding to s (k~ (cf. Fig. 6). 

This classification of reaction mechanisms according to catchment regions C (s~') 
of saddle points s ~k~, A(s~k~) = 1, may also be interpreted as a classification 
according to transition state structures, since the same C ~'~') catchment regions 
are proposed for the identification of chemical structures approximately cor- 
responding to saddle points of index A = 1, i.e. to classical transition states. 

The stability of ideal steepest descent and minimum energy paths with respect to 
small perturbations, e.g. vibrational motion across the reaction path, depends on 
index/x(r )  of points r along the path [1]. A sufficient condition for stability is 
/x(r) = 0, that is, steepest descent and minimum energy paths are stable in Do 
domains. Usually a large perturbation of a minimum energy path p(k~ is required 
to change the basic features of the reaction mechanism, i.e. to convert it from an 
"s ~k~ dominated" mechanism into one that is dominated by another saddle point, 
e.g. s ~k'), k # k'. Such an example is shown in Fig. 6, where the entire p~k~ 
minimum energy path is contained in a Do domain,/~ (r) = 0 if r ~ p(k~. However,  if 
minimum energy path p(k) does pass through an instability domain D , , / x  > 0, 
such as the domain Dx shown in Fig. 7, then small perturbations may cause large 
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S , _S (k') p(k') ~ X X  

M P" 1 

e / 

Fig. 6. Model surface with minimum energy paths p(k) and p(k') and distorted paths P and P' 

"".. ~ c ( ' )  " ~ ,  ' ~D~J ~ \ I r  
. .  �9 : ~. . . . . . .~176 .... . . ~  -.~....l.- 

Fig. 7. Surface model with instability domain D1 extending over several catchment regions. Small 
perturbations may cause a branching of the reaction mechanism 
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changes in the path, and, depending on the actual surface the new path may lead to 
a different product [1]. 

For the simplest case of one isolated instability domain D , , / z  > 0, a necessary 
condition for such instability-induced change of reaction mechanisms may be 
given in terms of catchment regions. It is possible for a small (infinitesimal) 
perturbation of the ideal minimum energy path p(k) to alter the outcome of the 
reaction from product m ~i') to product m (r'), i' r i", only if conditions a, and b, are 
fulfilled: 

a) p<k) passes through the instability domain 

D~, ~ > 0. (45) 

b) The W <i') and W <~') boundaries of catchment regions C (~') and C <r') do have 
common points with D ,  

W <i') ~D~, r •,  (46a) 

W (i') n D ,  ~ ~ .  (46b) 

The minimum energy path p(k) on the model surface shown in Fig. 7 is an example 
for such a path. In domain D1, pCk) is not stable, since any displacement of the 
path, orthogonal to the gradient is associated with a lowering of the energy E(r);  
consequently, small perturbations may cause extensive displacements. The shift 
across the W ~ ' ) / W  (i'~ boundary symbolizes the perturbation that diverts the path 
from m ('') to m (i"). The actual process P'  is equivalent to an m(~)-->S~k)~ m (~') --> 
s(k') -. m <~") transformation, i.e. to two consecutive processes, along p<k) followed 
by p(k'~. The reaction mechanisms may be referred to by the corresponding saddle 
points s <k~ and s (k'). The contribution of the second mechanism to the actual 
process P' is a consequence of the crossing of path P' through the w ~ i ' ) / W  ~'~ 
boundary, since this crossing point r, 

r ~ P '  ~ W (i') ('~ W (i") (47) 

is also an element of catchment region C (~')~, 

r ~ C (~<~'~) (48) 

and the chemical structure associated with point r is a transition state structure of 
type s (k'~. 

Since in this model surface both conditions a) and b) are satisfied for the ideal path 
p(k), the net result is an actual "branching" of the reaction mechanism. Besides 
m ("), the product of the ideal single step process p(k), product m (~') also appears, 
that is ideally a product of a two-step process, p(k) followed by p(k,). 

7. Conclusions 

The geographical concept of catchment regions is generalized for multidimen- 
sional energy hypersurfaces of polyatomic chemical systems. The R space of 
internal coordinates is partitioned into catchment regions C (re) of critical points 
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of var ious  indices  A( rc )  and  a d o m a i n  /~excl, whe re  the  ene rgy  hype r su r f ace  
concep t  is a p o o r  a p p r o x i m a t i o n  to the  energy  expec t a t i on  value.  T h e  ca t chmen t  
reg ion  pa r t i t i on ing  is based  on equ iva lence  classes,  de f ined  for s t eepes t  descen t  
pa ths  {P,}. Prope r t i e s  of C ~*C~ ca t chmen t  reg ions  and  the i r  W ~rC) b o u n d a r i e s  a re  
ana lysed  and  the i r  re la t ions  to the  chemica l ly  mos t  i m p o r t a n t  D ,  doma ins  with 
sma l l / x  indices  a re  inves t iga ted .  C a t c h m e n t  reg ions  C ~m"~ and  C ~s~k)) of m i n i m a  
m ~i) and  sadd le  po in ts  s ~k~, ~(s~k) )=0 ,  a re  p r o p o s e d  for  the  classif icat ion of  
chemica l  s t ruc tures  and  reac t ion  mechan i sms ,  respec t ive ly .  A necessa ry  cond i t ion  
for  i n s t ab i l i t y - induced  b ranch ing  of r eac t ion  mechan i sms  is given in t e rms  of the  
re la t ions  b e t w e e n  D ,  d o m a i n s  and ca t chmen t  regions .  
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